The University of Maryland Medicine Bulletin, America’s oldest medical alumni magazine, is jointly sponsored by the Medical Alumni Association of the University of Maryland, Inc., and the University of Maryland School of Medicine.

The acceptance of advertising by this publication does not in any way constitute endorsement or approval by the Medical Alumni Association or medical school. Requests to reproduce articles should be made to: Editor, Medicine Bulletin, 522 W. Lombard Street, Baltimore, Maryland 21201-1636, or by email: maa@medalumni.umaryland.edu. Subscriptions are $20 per year (domestic) and $25 (overseas).

For information on advertising, please contact: The Medical Alumni Association of the University of Maryland, Inc. email: maa@medalumni.umaryland.edu.

Medical Alumni Association
Board of Directors
Otha Myles, ’98
President
Tamara Burgunder, ’00
President-Elect
Nelson H. Goldberg, ’73
Vice President
Victoria W. Smoot, ’80
Treasurer
George M. Boyer, '83
Secretary
Protagoras N. Cutchis, ’83
Donna S. Hanes, ’92
Joseph M. Herman, ’00
Michael K. McEvoy, ’83
Gary D. Plotnick, ’66
Maurice N. Reid, ’99
Jerome Ross, ’60
Luette S. Semmes, ’84
Elizabeth Tso, ’79

Directors
Geoffrey B. Liss, ’76
Richard Keller, ’58
Robert M. Phillips, ’82
Robert R. Rosen, ’49
Honorary Regional Vice Presidents
Ronald Goldner, ’65
Peter MacArthur, ’11
Martin I. Passen, ’90
Dr. E. Albert Reece, Dean
Ex-Ofﬁce
Larry Pitrof
Executive Director

University of Maryland School of Medicine
Board of Visitors
Michael E. Cryor
Chair
Peter G. Angelos, Esq.
Morton D. Bogdonoff, MD
Jocelyn Cheryl Bramble
Frank C. Carlucci, III
William M. Davidson, Jr., Esq.
Robert C. Embry, Jr.
Robert E. Fischell, ScD
Donald E. Geesey
Ronald Goldner, ’65
Stewart J. Greenebaum
William Hackerman
John R. Kelly
Harry C. Knipp, ’76
Carolyn McGuire-Frenkel
Edward Magruder Passano, Jr.
Martin I. Passen, ’90
Timothy J. Regan
Mehrin Sharoky, ’76
Richard L. Taylor, ’75

Bulletin Editorial Board
Joseph S. McLaughlin, ’56
Chairman
Roy Bards, ’84
Frank M. Cilia, MD, MACP
Nelson H. Goldberg, ’73
Donna S. Hanes, ’92
Joseph M. Herman, ’00
Harry C. Knipp, ’76
Morton D. Kramer, ’55
Morton M. Krieger, ’92
Jennifer Litchman
Philip Mackowiak, ’70
Michael K. McEvoy, ’83
Martin I. Passen, ’90
Gary D. Plotnick, ’66
Larry Pitrof
Maurice N. Reid, ’99
Emesto Rivera, ’60
Jerome Ross, ’60
Luette S. Semmes, ’84
James Swyers

Medicine Bulletin
University of Maryland Medical Alumni Association & School of Medicine

To: Editor, School on the Baltimore campus.

requests to reproduce articles should be made to: Editor, Medicine Bulletin, 522 W. Lombard Street, Baltimore, Maryland 21201-1636, or by email: maa@medalumni.umaryland.edu. Subscriptions are $20 per year (domestic) and $25 (overseas).

For information on advertising, please contact: The Medical Alumni Association of the University of Maryland, Inc. email: maa@medalumni.umaryland.edu.

features

Discovery & Innovation 10
Research Capable of Transforming Medical Care
Maryland research has surged over the past two decades. In the short term it has dramatically expanded the school’s physical plant, and insiders—including alumni—have enjoyed Maryland’s elevated stature among the nation’s 133 medical schools. In the long run, however, these initiatives are undertaken to relieve suffering, eradicate disease, and improve the health of every individual on our planet. In this feature, writer Jim Swyers provides updates on four game-changing research projects.

(cover illustration: Fotolia)

An Extra Mile for the Extra Edge 15
Epidemiology and Public Health
Supported by $15 million in research funding and now offering 12 degree programs, Maryland’s department of epidemiology and public health is out to shatter the perception that this discipline is nothing more than abstract science. Its 58-member department, consisting of epidemiologists, biostatisticians, and behavioral and social scientists is laboring to incorporate public health into virtually every professional school on the Baltimore campus.

The 135th Medical Alumni Association Reunion 24
Clinicopathological Conference, Crab Cakes & Comradery
Simon Bolivar, regarded as the George Washington of South America, was this year’s subject during the historical Clinicopathological Conference—centerpiece of the Medical Alumni Association’s annual reunion. The two-day celebration included tours, lectures, and social events targeting classes ending in “0” and “5.”

Alumna Profile: Sangeeta Pati, ’90 32
A Singular Path
A prolonged hospital stay at age 16 due to a near fatal attack of hepatic encephalitis would profoundly impact Sangeeta Pati, ’90, in her pursuit of a balanced medical practice. Today she is president and medical director of the Sajune Institute for Restorative and Regenerative Medicine in Orlando where her therapies combine conventional and natural medicine for thousands of patients each year.

Editor-in-Chief
Larry Pitrof
Medical Editor
Morton M. Krieger, ’52
Design
Brushwood Graphics Design Group
Art Director
Nancy Johnston

departments

Dean’s Message 2
Remembered 3
News & Advances 4
Faculty News 20
Recollections 34
Student Activities 35
Advancement 36
Managing Wealth 39
Class Notes 40
In Memoriam 42

The University of Maryland Medicine Bulletin, America’s oldest medical alumni magazine, is jointly sponsored by the Medical Alumni Association of the University of Maryland, Inc., and the University of Maryland School of Medicine.

The acceptance of advertising by this publication does not in any way constitute endorsement or approval by the Medical Alumni Association or medical school. Requests to reproduce articles should be made to: Editor, Medicine Bulletin, 522 W. Lombard Street, Baltimore, Maryland 21201-1636, or by email: maa@medalumni.umaryland.edu.

Subscriptions are $20 per year (domestic) and $25 (overseas).

For information on advertising, please contact: The Medical Alumni Association of the University of Maryland, Inc. email: maa@medalumni.umaryland.edu.

Summer 2010 • Volume 95 • Number 1
believe that we are on the verge of a second “Golden Age” of biomedicine, one in which a new set of wonder tools and innovative approaches to treating diseases and medical conditions, such as genomics, stem cells, structural biology, etc., will allow medicine to become much more personalized and better targeted, so that it is not only more effective but far less toxic to the patient. Just as antibiotics heralded in the first Golden Age of medicine in the latter part of the 20th Century by greatly extending life as well as quality of life for people around the world, I believe these new tools and approaches will allow us to live longer, happier, and more productive lives.

This issue of the University of Maryland Medicine Bulletin features five imaginative projects highlighting discovery and innovation at our medical school. I believe they will catalyze fundamental changes at many different levels in their respective fields and help transform the practice of medicine and health care delivery in ways we cannot yet imagine.

The first feature entitled “Discovery and Innovation” presents four short vignettes of recently launched projects by faculty and their collaborators that offer to transform how specific diseases or medical conditions are viewed and treated, as well as how whole fields of investigation are conducted. Indeed, these innovative research projects have the potential to catalyze literally “quantum leaps” not only in their respective fields but in many related fields of biomedical research and clinical practice. More importantly, they offer to significantly accelerate the development of life-saving therapies for conditions where no acceptable treatments currently exist.

These innovative research projects have the potential to catalyze literally “quantum leaps” not only in their respective fields but in many related fields of biomedical research and clinical practice. More importantly, they offer to significantly accelerate the development of life-saving therapies for conditions where no acceptable treatments currently exist.

The second feature focuses on our department of epidemiology and public health, headed by J. S. Maggsen, PhD, professor and chair. His department is redefining itself by a method that not only changes the way students view diseases and patients but also how they ultimately will practice medicine and, hopefully, conduct research to improve the practice of medicine.

Just as the discovery and development of penicillin and other antibiotics in the late 1930s and early 1940s virtually eliminated death from bacterial infections in the latter half of the 20th Century, I believe these types of investigations have the potential to alleviate a great deal of unnecessary deaths and human suffering in the not-too-distant future, and that we are truly blessed to be able to witness the dawn of this second Golden Age of biomedicine.

E. Albert Reece, MD, PhD, MBA

E. Albert Reece, MD, PhD, MBA

Vice President for Medical Affairs, University of Maryland

John E. and Aviva K. Bowers Distinguished Professor and

Dean, School of Medicine

Acting President, University of Maryland Baltimore

Larry Anderson, PhD, anatomy instructor at Maryland since the late 1970s, died unexpectedly at his home on May 15. He was 62.

Born in a suburb of Detroit, Anderson received a PhD in physiology and biochemistry from Wayne State University in 1976. He came to Maryland later that year as an NIH postdoctoral fellow in reproductive endocrinology in the department of physiology, working with Cornelia Channing, PhD, and her study of the hormone inhibin.

Upon completion of his fellowship, Anderson was encouraged to apply for a faculty position in the department of anatomy. After teaching a seminar in the department for one year, he was offered the position. Anderson taught anatomy as well as structure & development to freshmen students for 30 years, serving as course master for the past decade. It is estimated that he instructed more than 4,500 medical students—more than half of the school’s living alumni—during his tenure.

Alumni recall fondly Anderson’s words at the beginning of his anatomy course: “This is your first patient. I expect you to extend the same respect to the cadaver on the dissection table as you will to patients who will later fill your offices.” They also remember him for his compassion, friendship, and enduring encouragement. He also advised them to maintain a balanced perspective on life.

Anderson received countless awards and honors, including being named the 2006 University of Maryland Baltimore Teacher of the Year, serving as chairman of the Maryland State Anatomy Board, and being named a charter member of the University of Maryland School of Medicine Academy of Educational Excellence.

In addition to serving as professor of anatomy and neurobiology and course director for structure & development, Anderson continued his funded research with graduate students and post-doctoral fellows. Two of his research efforts were associated with reproduction—the role of androgens in regulating various cellular and molecular characteristics involved in the growth, development, and differentiation of one compartment within the follicle of the ovary, the granulosa cells; and a collaboration with the department of epidemiology and toxicology on the effect of paternal lead exposure on embryo development and subsequent generations.

Since he was a youngster, Anderson had a passion for race cars and was the owner of a 1965 AC Cobra, 1964 Pontiac GTO, and 2005 GTO which he maintained himself.

Survivors include wife Shirley, two children, and two grandchildren. The family has established a memorial fund to benefit medical students. Gifts are warmly received by the Medical Alumni Association of the University of Maryland, Inc., 522 W. Lombard Street, Baltimore, MD 21201-1636 or on our website: www.medicalalumni.org.

A memorial service has been scheduled for Larry Anderson on Thursday, September 16, at 4:30 p.m., at Westminster Hall. All are welcome.
Vaginal Microbes Vary Among Healthy Women in Different Ethnic Groups

The delicate balance of microbes in the vagina can vary greatly among healthy women, according to a new study led by the University of Maryland School of Medicine Institute for Genome Sciences. Researchers hope further study will lead to personalized reproductive medicine for women, allowing doctors to tailor each woman’s treatment and health maintenance strategies to her individual microbial make-up.

The study, published online the week of May 31 in the journal Proceedings of the National Academy of Sciences, used genomics-based technologies to examine the vaginal microbes in 450 women. The work, a collaboration between Maryland’s institute and researchers at the University of Idaho, is the first in-depth, large-scale molecular characterization of vaginal microbial communities. The research is an example of an emerging field of genomics, the study of the human microbiome. The human microbiome refers to all of the microbes that live on and in the human body. Scientists believe these tiny organisms interact closely with the human genome and play a critical role in human health and disease. In the vagina, these communities of microbes play a critical role in maintaining and promoting a woman’s health and in protecting her against disease. Vaginal microbes provide protection mainly by producing lactic acid to create an acidic environment that is hostile to certain harmful microbes or infection.

“The surprising finding here is that some women can be healthy while harboring different communities of microbes,” said Jacques Ravel, PhD, associate professor of microbiology and immunology and associate director of the institute. “Even microbes that were previously believed to be detrimental to a woman’s health seem to be part of a normal ecosystem in some women, according to this study. Further research is needed to establish the function of these microbes and the communities in which they appear. Some of the seemingly beneficial microbial communities seem to be associated with a higher pH which is usually considered to be unhealthy.”

“We’ve found we can actually group women by the type of microbes they have in the vagina,” says Ravel. “The study shows that doctors should not assume every woman is the same. We may not need to personalize reproductive medicine down to the individual woman, but by which microbial group to which they belong. The information about each woman’s vaginal microbial community could inform how doctors treat her for vaginal conditions. It could help drive the development of better treatments to reestablish vaginal health. Understanding these microbial communities could also help us determine which women might be at higher risk for infections.”

Yeast infections or bacterial vaginosis cause discomfort in patients and can have serious health effects. About 25 to 30 percent of women have bacterial vaginosis on any given day, and it is the most common vaginal infection that causes women of reproductive age to visit their primary care physician. “If we could identify women as being at a high risk for developing bacterial vaginosis, we could develop preventive methods to lower the risk of infection,” says Ravel.

The study involved vaginal samples taken from 450 women representing four ethnic groups equally: black, Hispanic, Asian and white. Ligia Peralta, MD, associate professor of pediatrics and microbiology and immunology, collaborated with clinicians at Emory University to collect the tissue samples. Ravel and his group at the institute worked with a co-investigator at the University of Idaho to use advanced genomics and bioinformatics technology to gather information on the microbes in the samples and analyze the data.

The researchers found five main groups of microbial communities, and the proportion of women in each community varied by ethnicity. They also found that microbial communities that may not offer women optimal protection were more common on among Hispanic and black women than they were in Asian and white women.
Vatican Supporting Stem Cell Initiative

Medical school researchers are leading a new international research initiative, funded in part by the Vatican, to explore the therapeutic potential of intestinal stem cells. The International Intestinal Stem Cell Consortium includes scientists from Maryland's center for stem cell biology and regenerative medicine as well as several institutes in Italy. The Vatican and the Istituto Superiore di Sanità, the Italian equivalent to the National Institutes of Health, announced the partnership at a news conference in Rome.

"This new coalition brings together scientists from both sides of the Atlantic to ensure we are exploring every avenue of stem cell research in order to bring real treatments as quickly as possible to patients suffering from deadly conditions such as Alzheimer's disease and multiple sclerosis," says Alessio Fasano, MD, professor of pediatrics, medicine and physiology and director of the mucosal biology research center and the center for celiac research at the medical school. "All of the partners have shown a tremendous amount of energy and enthusiasm into putting this consortium together, and we are thankful to the Vatican for making this research possible," adds Fasano, who is coordinating the consortium.

In addition to Maryland, the group includes researchers from the Istituto Superiore di Sanità, the University of Salerno in Fasano's hometown, and the Bambin Gesù in Rome, the largest children's hospital in Europe. "Our center is dedicated to pursuing every promising avenue of stem cell science using multidisciplinary research partnerships between our faculty and the construction of core facilities to support all types of stem cell research. We hope this new funding will help us reach our goals," Fasano explains.

Intestinal stem cells are highly active and support the shedding and replacing of all the cells in the lining once every four to seven days. They are multipotent, already programmed to generate all the various kinds of cells necessary to line the intestine, including mucus cells and epithelial cells. And they can be harvested easily using endoscopy. As a result, patients could have their own intestinal cells harvested and used to treat bowel disease, reducing the risk of rejection or a reaction to the transplant.

"We just want to take advantage of what nature is already doing in the intestines," Fasano concludes. "To study this, though, takes multidisciplinary teams of experts in stem cell research, experts in gastrointestinal medicine, experts in molecular biology and bioengineering. We need all the pieces of the puzzle, and we need to communicate freely, sharing our ideas and findings. That is the intention of our consortium."

The group is working to answer two critical questions: how intestinal stem cells can be kept alive and made to replicate in the laboratory, and once healthy and flourishing, how they can be transformed into different types of cells. If laboratory research goes well, the consortium could move forward with clinical research.

"I am confident that this partnership will facilitate new discoveries about intestinal stem cells that will lead to a better understanding of all types of stem cells, their function and potential to treat disease," says Curt Civin, MD, professor of pediatrics, director of the center for stem cell biology and regenerative medicine, and associate dean for research at Maryland.

"Our center is dedicated to pursuing every promising avenue of stem cell research using multidisciplinary research partnerships between our faculty and the construction of core facilities to support all types of stem cell research. We hope this new funding will help us reach our goals," Civin adds.
Hugh E. Mighty, ’82, associate professor and chairman of the department of obstetrics, gynecology & reproductive sciences since 2000, was named vice chancellor for clinical affairs at Louisiana State University Health Science Center in Shreveport where he will also serve as professor of obstetrics and gynecology. An expert in maternal medical disorders and critical care medicine, Mighty held multiple leadership roles at Maryland including president of the medical staff and chair of the women’s health collaborative. Christopher Harman, MD, is serving as interim chair of the department, and a national search is underway for Mighty’s replacement.

Stephen B. Liggett, MD, was named associate dean for interdisciplinary research. Liggett is professor of medicine and physiology and is retaining the title of director of the cardio-pulmonary genomics program. In his role as associate dean, Liggett is fostering scientific collaboration between faculty members from throughout the institution in order to develop a broad range of interdisciplinary basic science and translational research, which will both broaden institutional basic research and lead to clinical applications for those basic science discoveries.

Stephen B. Liggett, MD

Neda H. Frayha, ’06, in addition to recent appointments as assistant professor in internal medicine and associate program director for the internal medicine residency program, is spending 50 percent of her time in the office of student affairs. Frayha recently completed a year as chief resident at Maryland. In the office of student affairs she replaces Gina Perez, MD.

Alignment

The Key to the Success of The University of Maryland Medical System

Co-authors Morton I. Rapoport, ’60, former CEO of UUMMS, and Stephen Schimpff, MD, former CEO of UMMC, trace the growth of University of Maryland Hospital from its birth as a private, not-for-profit enterprise in 1984 to a thriving, nine-hospital system today.

$29.20 (with shipping)

To order on Amazon, log on to:
http://www.amazon.com/Alignment-Success-University-Maryland-Medical/dp/0961911956/

Contributors to News & Advances include: Sharon Boston • Karen A. Buckelew • Ellen Beth Levin • Larry Roberts • Bill Seiler • Karen Warmkessel Photos by: John Seebode • Mark Teske
A snapshot of game-changing Maryland research initiatives

Research funding at Maryland continues to surge, paving the way for breakthrough discoveries and novel approaches to treating disease. Writer Jim Swyers provides updates on four such initiatives currently underway.

Unraveling Melanoma

Melanoma is the deadliest type of skin cancer, and the incidence of cutaneous melanoma is increasing faster than any other common cancer, with an approximate doubling of rates every 10 to 20 years in countries with Caucasian populations. Although melanoma is quite curable in its early stages, once it has metastasized it is extremely difficult to treat.

“Thankfully, most cases of melanoma are caught in the early stages,” says Edward A. Sausville, MD, PhD, professor of medicine and associate director for clinical research at Maryland’s Marlene & Stewart Greenebaum Cancer Center. “However, if undiagnosed and untreated, the tumor can spread downward into deeper skin layers and to lymph nodes and internal organs. Once that happens, patients’ therapeutic options are very limited.”

People diagnosed with stage IV melanoma have an average life expectancy of only six to nine months. However, this grim scenario may soon change for some advanced-stage melanoma patients if a clinical trial led by Sausville proves promising. The trial is in a small group of stage IV melanoma patients using a drug called pentamidine. It has previously been shown to be curable in its early stages, once it has metastasized it is extremely difficult to treat.

Sausville and Weber are currently enrolling approximately 16 stage IV melanoma patients for a phase II clinical trial for patients with advanced stage melanoma. The grant was funded by the National Cancer Institute late last year.

Pentamidine was an extremely exciting candidate,” explains Weber. “It is often used to treat infections in AIDS patients. Therefore, it has a demonstrated safety profile. We didn’t want to use something that was effective in blocking the S100B-p53 interaction but was toxic to patients.”

In subsequent studies, Weber’s laboratory demonstrated that pentamidine was both highly effective in interfering with S100B’s ability to bind to p53 in melanoma and was able to restore the normal tumor suppression activities of p53.

“Because we are selecting only those patients with a very specific biotype, this is a very personalized approach and is much more targeted therapy than any available to date,” Sausville explains. “A few years ago, my laboratory demonstrated that a calcium-binding protein known as S100B, frequently found in high concentrations of melanoma cells, binds and inhibits the function of a well-known tumor suppressor protein, p53. We then hypothesized that if we could interfere with S100B’s ability to bind to p53, we might be able to restore p53’s normal function and return melanoma cells to their non-cancerous state,” explains Weber.

Armed with that knowledge as well as an atomic resolution three-dimensional structure of an S100B-p53 complex, Weber’s laboratory began using nuclear magnetic resonance spectroscopy to screen already available chemical agents that might be able to disrupt the ability of S100B to tightly bind to p53. After screening a number of candidates, they came upon pentamidine.

“Pentamidaine was an extremely exciting candidate,” explains Weber. “It is often used to treat infections in AIDS patients. Therefore, it has a demonstrated safety profile. We didn’t want to use something that was effective in blocking the S100B-p53 interaction but was toxic to patients.”

In subsequent studies, Weber’s laboratory demonstrated that pentamidine was both highly effective in interfering with S100B’s ability to bind to p53 in melanoma and was able to restore the normal tumor suppression activities of p53.

He then contacted Sausville about collaborating on a grant to test pentamidine in a clinical trial for patients with advanced stage melanoma. The grant was funded by the National Cancer Institute late last year.

Sausville and Weber are currently enrolling approximately 16 stage IV melanoma patients for a phase II clinical trial for patients with advanced stage melanoma. The grant was funded by the National Cancer Institute late last year.

Sausville and Weber are currently enrolling approximately 16 stage IV melanoma patients for a phase II clinical trial. The only caveat is that the treatment is not for everyone who has melanoma. Patients enrolled in the trial must have the p53 biotype—that is, they must have S100B complexed with wild-type p53. Although they are reluctant to predict the outcome of the trial, they suggest it has significant potential to be more effective than previously available therapies.

“Because we are selecting only those patients with a very specific biotype, this is a very personalized approach and is much more targeted therapy than any available to date,” Sausville explains.

In 1982, UCSF researcher Stanley B. Prusiner published a paper in the journal Science suggesting that a protein-only particle, or “prion” as he dubbed it, could cause a neurodegenerative infection.

Specifically, Prusiner’s theory held that a normal, or wild-type prion protein, which occurs naturally in all mammals as well as birds and fish, somehow becomes misfolded and has the ability to convert other normal prion proteins into this misfolded structure and cause Transmissible Spongiform Encephalopathies (TSE), a group of fatal diseases that, as they progress, riddle the brain with sponge-like holes.

Even though Prusiner received the prestigious Nobel Prize in 1997 for this work, the idea that a protein alone could be an infectious agent remained a contentious issue until just recently. Previously, only viruses and bacteria were believed to have the ability to cause such an infection.

One of the most consistent skeptics of this prion theory was Robert G. Roberson, PhD, associate professor of neurology at Maryland and director of the molecular neurovirology.
However, Rohwer is now a firm it still incredulous believers. The person to change his mind was Ilia V. Baskakov, PhD, who joined Maryland's biotechnology institute in 2001 from Prusiner's laboratory. Baskakov, associate professor and head of the program in prion diseases at the institute, had developed a novel method of making abnormal prions from wild-type ones.

Rohwer, who had spent 35 years searching for a viral cause for TSE diseases, attended a lecture given by Baskakov and says he was "immediately impressed" by his thoughtful approach to proving the prion hypothesis.

"If I figured anyone was going to succeed it was likely to be him," Rohwer says. "His laboratory was making recombinant prion proteins in bacteria, isolating them, and then utilizing various means to misfold them followed by rigorous biophysical and biochemical characterizations of the resulting structures. However, he had no way to test for infectivity, I convinced him to let me put his various constructs into hamsters and see what happens. I also won him over to the idea that the prion theory to skeptics like myself, he had to synthesize a wild-type prion protein, fold it into its infectious form, and show that it would cause a TSE disease when inoculated into normal animals. The interpretation of prior work had been confounded by the use of mutant prion proteins and abnormal transgenic animals for assay," Rohwer explains.

Over several years they tested numerous constructs which resulted in long happy lives for the test animals. Then 500 days after inoculation, hamsters inoculated with a particular prion construct began to look "different" from the control animals. The experimental animals displayed a repeated startle response, characteristic of neurodegenerative disease, and their brains were riddled with amyloid plaques. Baskakov's prion construct also produced a prion disease in hamsters whose clinical course was in some ways more similar to that in human prion diseases than the prion diseases typically found in lab animals.

According to Rohwer, this experiment was convincing. "There was no other explanation other than that the synthetic misfolded prion protein was causing the disease and that the protein was both necessary and sufficient to cause disease," he says.

Although Baskakov is happy that the prion theory has finally been exonerated, he is even more thrilled about the prospects of using this technology and the new animal model to answer various questions about prion disease pathogenesis and, possibly, even intervene in its course.

"Now that we have an animal model," Baskakov explains, "we can address a number of quite puzzling issues, such as the mechanism that these misfolded prions use to recruit normal prion proteins to their cause and which parts of the brain are targeted by a particular strain of prion. We also hope to understand the structural features of prions that are important to infectivity. Furthermore, in the long term, if we can understand the mechanism of action of prion propagation, it might be possible to design interventions or even protective vaccines against these terrible diseases," he says.

In the long term, if we can understand the mechanism of action of prion propagation, it might be possible to design interventions or even protective vaccines against these terrible diseases.

"I never really believed the hypothesis that you could have a huge spectrum of diseases that are caused by the malformation of a single protein," says Rohwer.

A computer database of human stem cells, "This is an extremely forward-thinking and innovative project because it will allow these high-quality stem cell research programs to exchange information and ideas in real time rather than waiting until any publish papers or present data at conferences.

National Heart, Lung, and Blood Institute (NHLBI) to Maryland to serve as the coordinating center for a consortium of the nation's most prominent stem cell research centers. The idea of the consortium, known as the NHLBI Progenitor Cell Biology Consortium, is to bring together the best and brightest stem cell researchers from around the country in cardiology, hematology, and pulmonary medicine, to jump start and accelerate cutting edge research in this exciting new field.

Michael L. Terrin, MD, CM, MPH, professor of epidemiology and preventive medicine, who was chosen to head the coordinating center for the consortium, says that this project has the potential to greatly accelerate the pace of stem cell research and, more importantly, the development of therapies based on stem cells.

"This is an extremely forward-thinking and innovative project. It will allow high-quality stem cell research programs to exchange information and ideas in real time rather than waiting until any publish papers or present data at conferences. Thus, it will establish an extraordinarily robust level of communication and cooperation among these programs and ultimately accelerate the development of stem cell therapies in this country and elsewhere," he explains.

A majority of the $30 million grant ($24 million) will actually be distributed by the coordinating center to the various consortium partners for pilot and collaborative research projects. The remaining $6 million will allow the coordinating center to provide capabilities for the consortium members to communicate by voice, video conference and digital media, as well as have access 24-7 to highly encrypted computer facilities to work on their projects together. At the heart of the project is a website that will provide stem cell researchers with tools they need to be successful, including immediate access to databases, bioinformatics expertise, the ability to share strategies and biological samples, and even tools for publishing their results in scientific journals.

"From top to bottom, this project is about increasing and expanding the level of communication and collaboration among stem cell researchers around the nation. This website is designed to facilitate the ability of consortium members to communicate rapidly and easily among themselves and the outside world, while still protecting the security of their data," says Terrin.

Additionally, the website will use peer pressure to encourage collaboration among consortium members by sharing "metrics" showing which programs are doing the best job of collaborating and sharing information. This peer pressure will be reinforced by NHLBI itself, which may encourage consortium members who collaborate the most productively by increasing their funding. In other words, the more they collaborate the more funding they will be eligible to put to good use. This incentive will also spur individual programs to combine their data and start research in new areas and in ways that would previously have been impossible, explains Terrin.
“Programs that may have found it convenient in the past to keep their data to themselves will now find it more beneficial to share,” says Terrin. “The result will be that stem cell researchers will advance on parallel tracks rather than sequentially as they have in the past. This is good for everyone involved in the field, but especially for patients who will benefit from the accelerated pace of therapeutic development.”

Revolutionary Trauma Therapies

Approximately 1.4 million people sustain a traumatic brain injury (TBI) each year in the United States, and at least 3,3 million have lifelong disabilities as a result of a TBI. As many as 100,000 Americans currently are living with a spinal cord injury (SCI). The cost of caring for these individuals with TBI and SCI is in the hundreds of billions of dollars each year. When there is a significant injury to the brain or spinal cord, a lesion occurs at the initial site of injury. Cells in this lesion, often referred to as the “core” of the injury, undergo rapid loss of integrity and die. This sets off a cascade of events that leads to even more damage in surrounding tissue, resulting in a life-long, chronically degenerative condition. Traditionally, it has been assumed little can be done to reverse either the short-term or longer-term damage caused by such trauma.

“Recent studies that we and others around the world have conducted suggest that there is much more we can do for these patients,” says Alan I. Faden, MD, the David S. Brown Professor in Trauma and director of the center for shock, trauma and anesthesiology research (STAR) & National Study Center for Shock and EMS. People who study TBIs and SCIs have typically assumed there is nothing that could be done for the cells in the core of an injury and have instead focused on ways to prevent further damage to the cells immediately adjacent to the core.

“Our studies have determined that there is a type of programmed cell death, or apoptosis, which occurs in the core of a TBI or SCI within 24 to 72 hours of the initial injury,” says Faden, a neurologist. “This type of cell death is regulated by a factor called apoptosis-inducing factor. We have utilized a drug strategy for stopping this process and, in animal studies, we have been able to reduce the size of the core of the lesion and produce a significant improvement in outcome. Therefore, we believe we may be able to treat or even prevent cell death in the lesion core of a brain or spinal cord injury patient if we can intervene as late as 24 hours or more after the initial injury,” Faden explains.

In addition to intervening in the immediate aftermath of a TBI or SCI, Faden and his collaborators are working on ways to prevent the long-term sequence of events that occur after such an injury. Recently they identified a cluster of genes involved in inflammation that is switched on, or “upregulated,” and reach maximum activity within one to two weeks after injury. These genes remain chronically upregulated thereafter.

One gene in particular is highly upregulated and seems to remain that way permanently after a TBI or SCI. Faden’s laboratory has identified a novel drug strategy for inhibiting this gene. Furthermore, on animal studies, his group has shown that the drug regimen can protect the animals from the long-term consequences of such an injury long after the trauma.

“We gave animals with a TBI the drug regimen one month after their initial injury,” Faden continues. “One month later, the lesions in the control group had continued to grow while the lesions in the treated animals had stopped growing. Imaging studies also showed that white matter was markedly degenerated in the control animals compared to the treated animals. Additionally, the drug-treated animals were significantly better off in terms of cognitive and motor abilities. So, we now believe it may be possible to treat a patient with a TBI or SCI even months after their initial injury and affect a significant improvement in their status by— at minimum—halting any further growth of their lesion and further degeneration of their brain or spinal cord,” he says.

With wars in Afghanistan and Iraq, Faden says the incidence of TBIs and SCIs undoubtedly will increase in the near future. “Hopefully we soon may have effective treatments to offer limiting their long-term disabilities.”

Photos by Richard Lippenholz
At Maryland, the department of epidemiology and public health is supported by a 58-member faculty directing education and research in six divisions in which 12 degrees are awarded in master, PhD and dual degree programs. A wide range of research initiatives earns $15 million in direct research funding annually from the National Institutes of Health (NIH), the Center for Disease Control, Veteran’s Administration, the Agency for Health Care Research Quality, and other funding organizations.

“We have a dual MPH degree program with everyone on the Baltimore campus,” reports chair, Jay Magaziner, PhD, MSHyg. “Our goal is to integrate public health within the professions, rather than training in the abstract. In essence, that charges us with developing a whole new model of public health training.”

The faculty responsible for this ambitious undertaking is strengthened by diversity among their backgrounds, complexity of their research, and uniformity when it comes to achievement. They represent epidemiologists, physicians, biostatisticians, behavioral and social scientists. Their students are doctors, lawyers, nurses, pharmacists, dentists, and social workers. Not all started out to take on prevention or public health issues. Many made a deliberate switch at some point, going that extra mile for the additional edge that equips them to tackle the tough questions that inevitably precede and follow every medical dilemma and research discovery. For instance, beyond looking at bench research and clinical trials that determine what causes breast cancer and how to treat it, students in the department question why many women still get the disease, and that vaccination isn’t commonplace among the public as well as by those in public health.

Division of health care outcomes research, reports that recent attention to public health issues, a surge in volunteerism in the U.S. and overseas, and employment opportunities in the public health workforce have probably all contributed to the increased interest in and application to public health degree programs,” she says.

She adds that what sets the MPH program at UMB apart from others is its granting of dual degrees across all professional schools, including masters of public health degrees in the schools of dentistry, law, medicine, nursing, social work and pharmacy. Classrooms facilitate multidisciplinary learning among the students, which is identified as a unique educational opportunity by those seeking the MPH degree. Students leave with methodological skills in one of two concentrations—epidemiology or community and population health. A new concentration in global health is under development. Anthony Harris, MPH, a professor who heads the division of health care outcomes research, reports that news accounts of hospital-related bloodstream infections have popularized a once “non-chic” interest, and that consequently, infections have become a priority concern among the public as well as by those in public health. “We have an NIH grant studying risk factors for antibiotic-resistant bacteria among intensive care patients,” he says. “We’re trying to determine whether certain antibiotics are causing resistance or emergence, or whether the infection is due to a patient’s poor health, such as comorbid conditions and severity of illness, or patient-to-patient transmission via environmental factors within the hospital.”

Another project that interests Harris’ group revolves around an emerging bacterium, acinetobacter baumannii, a global infection additionally seen among returning military personnel. He says this project is funded by the NIH and partially studied by medical students, and that early stages of published findings are underway.

“One of our PhD students has been successful in working on a MRSA project, in which he made significant progress in changing the conventional thought process about the infection,” Harris says. “The work undertaken by this student has opened up new, more cost-effective ways to screen for MRSA among a specific group of patients, rather than screening every hospital patient.”

He explains that, with regard to the antibiotic resistant gram negative bacteria, it was once felt that antibiotics were driving the emergence of MRSA more than transmission by the patient, and therefore, infection control wasn’t a paramount concern.

“However, I think the body of research we’ve done has raised awareness of a complicated interplay between antibiotics and patient-to-patient transmission,” Harris says. “That’s a paradigm shift in many ways.”

Roghmann adds that clinical and translational research allows a student interested in vaccine development to look first at the animal and human studies, then to the drug’s initial safety evaluation and effectiveness. After this, the research becomes an integral part of the practice of implementation science, as students get to see how clinical and translational studies lead to the practice of medicine—and what needs to follow.

“It’s at this point that those involved in the study of public health begin to look for appropriate ways to implement evidence-based recommendations,” she says. “It may be through guidelines for clinical practice guidelines.

Their students are doctors, lawyers, nurses, pharmacists, dentists, and social workers. Not all started out to take on prevention or public health issues. Many made a deliberate switch at some point, going that extra mile for the additional edge that equips them to tackle the tough questions that inevitably precede and follow every medical dilemma and research discovery.
practice published by professional societies, or ultimately through changes in public policy.”

A primary mission of the epidemiology department is the provision of educational programs that prepare physicians and other health professionals to provide care based on sound scientific evidence, specifically with regard to issues that have a big impact on patients’ lives. As the first medical school in the country to teach preventive medicine in 1833, Maryland has taken that objective and issues that have a big impact on patients’ lives. As the first medical school in the country to teach preventive medicine in 1833, Maryland has taken that objective and directed it to activities embracing some of today’s major health concerns. In every case, the classroom becomes a laboratory for students who conduct studies as they learn.

Patricia Langenberg, PhD, professor, vice chair for academic programs, and director of the epidemiology doctoral program, discusses an NIH career development award which she directs. Targeting those interested in the field of women’s health, the $500,000 yearly NIH grant supports four faculty scholars who devote 75 percent of their efforts toward a research project. Recruited externally and from among UMBC faculty, they tackle a variety of women’s health issues during their two-year or longer appointments. Langenberg says issues have run the gamut from hormonal influences on mood disorders to HPV and cervical cancer, to effects of maternal diabetes on the embryo.

“These are important areas of concern,” she says. “It’s amazing to me that, until recently, there had been little research on the symptoms of menopause. We still don’t know much about hot flushes and what causes them. But that’s beginning to change.”

Langenberg points out, that until about 12 years ago, most medical research operated on the theory that if existing knowledge about symptoms and vulnerability to certain diseases worked for men, they worked for women as well. She attributes the change to the red and blue U.S. Congress, who began to demand funding for research on gender issues.

The women’s health research group (WHRG), based in the department but extending to a multidisciplinary consortium throughout the Baltimore campus, is examining women’s health concerns from the perspectives of medicine, law, pharmacy, nursing, dentistry and social work.

Lauren Levy, who coordinates the WHRG, reports that a series of symposia are directed to faculty members throughout the campus, and that speakers address concerns from career development to inconsistencies in research affecting men and women.

“Our goal is to provide information about the ways in which conventional research often has failed to consider the differential impact of gender on outcomes,” she says. “We hope such awareness will foster an environment in which gender differences will become intrinsic to research efforts.”

Department faculty also are engaged in training the next generation of scholars in gerontology through the gerontology doctoral program—one of only eight such programs in the country—which is funded by an NIH institutional training grant in the epidemiology of aging.

Gerontology doctoral program co-director, Denise Orwig, PhD, points out, “The interdisciplinary nature of the program provides a necessary foundation in preparing students for serving the diverse older adult population, which will increase over the coming decades.”

Commenting on the quality of the student body represented by the department, Royal-Schneller reports admission criteria are heavily weighted.

“We look for students with credible reasons for seeking the degree we offer,” she says. “We examine their quantitative skills including grades and related experience. Our access to all the professional schools on the Baltimore campus enables the kind of multidisciplinary education that attracts top students.”

We’re training researchers who will span an entire health issue from bench to bedside to community, and back again. They are the ones who will evaluate research, who will question whether a specific study has had an impact on people, and whether we can say we’re making a difference.

Her observations on the high education standards within the department are reflected by Magaziner, who agrees that a superior student body is critical to the department’s mission.

“We’re training researchers who will span an entire health issue from bench to bedside to community, and back again,” he says. “They are the ones who will evaluate research, who will question whether a specific study has had an impact on people, and whether we can say we’re making a difference.”

There is no question Magaziner himself has made a difference in the department he leads and in a larger perspective as well. His gerontology studies are highly regarded throughout the country, and his work on hip fractures places him among the top authorities on the subject nationally. One of his colleagues refers to the reputation he commands at the NIH, saying that Magaziner is one of a few researchers the NIH has selected to receive two MERIT awards—a personal distinction that provides support to key investigators whose productivity and excellence in research are likely to continue in the future. The award is intended to foster long-term expansion of a research program.

“Most of our gerontology studies target secondary and tertiary prevention,” Magaziner says. “We’re interested in the management of conditions after symptoms appear or the patient first presents for treatment. The end goal is to maximize how people recover from skeletal hip fractures and other disabling conditions.”

Other gerontology research in the department includes studies relative to new technology in the management of diabetes, specifically evaluating the effectiveness of tele-health technology that monitors blood glucose levels, and provides feedback on appropriate management to patients. Scientists in the department also have authored a considerable amount of work on cognitive problems among older adults, and now work on trauma and emergency medicine in older persons.

Appraising the contributions of students, Magaziner says research conducted by one former student determined that the cause of death following hip fracture is substantially different in men and women. While men account for only 25 percent of all hip fractures, death from infection is substantially higher in men than in women.

Orwig, who is associate director of the Baltimore hip studies program, explains the depth of the research and its importance in targeting a critical health issue for men.

“The unique aspect of our current research is that we are recruiting 200 men and 200 women for comparison within a network of 25 participating hospitals in giving us one of the largest networks of recruitment sites in the world” she says. “We already have shown some small differences between men and women suffering hip fractures, and we have reason to anticipate that the incidence of these fractures among men will increase significantly over the next several years.”

She believes that, because men are living longer and experiencing osteoporosis in greater numbers, it is projected that by 2040 they will suffer hip fractures as frequently as women do today.

“Our research is exciting in that it is a fast-forwarding focus on a significant health problem as its incidence increases,” she says. “We are looking at a broad series of assessments from physical functioning to cognitive issues, and we’re following these patients for a year after their fracture.”

One of the more unique courses in the department is a tribute to the creativity and resourcefulness of a highly innovative faculty. Langenberg explains that the required course for MS and PhD students includes the participation of five faculty members. Conducted through the graduate program in life sciences, it is taught by department faculty members who present a dataset and research questions that have not yet been researched in that dataset. The concept is that the student will have a publishable paper at the conclusion of the course.

“This is a wonderful preparation for a student’s dissertation,” Langenberg says. “They start with a question, they check the literature, refine it and create a hypothesis. They question some more, make presentations to the class, do complex analysis, do all that needs to be done before writing a paper and presenting the results. Many wind up publishing their paper.”

Magaziner believes that understanding of the value of public health research and training is increasing and that the future for epidemiology programs is substantial and attractive.

“The NIH is looking more and more as to how its funding down through the years can be applied to larger and more diverse groups of people,” he says. “What that amount is a mindset that is concerned not only in developing studies focused on which interventions work, and on strategies to deliver them to select groups of people—but research that determines how well those interventions affect the health of the public.”

Jay S. Magaziner, PhD, can be contacted at 410-706-3552 or magazin@epi.umaryland.edu
Toby Chai, MD, has been appointed to a four-year term as a senior editorial consultant for the American Board of Urology Examination Committee. He will be helping construct and write the exams that are given by the board.

Zhi Haskal, MD, professor, departments of diagnostic radiology & nuclear medicine and surgery, has been named editor of The Journal of Vascular and Interventional Radiology, published by the Society of Interventional Radiology. His five-year term begins in January 2011. The monthly, peer-reviewed scientific journal—published since 1989—focuses on the critical and cutting-edge medical, minimally invasive, radiological, pathological and socio-economic issues of importance to vascular and interventional radiologists.

Geoffrey Rosenthal, MD, professor, department of pediatrics, who has been a member of the Food and Drug Administration Pediatric Advisory Committee (PAC) since July 2007, is chair of the PAC for a two-year term ending June 30, 2011. Recognized for his fair and thoughtful perspective during committee deliberations and his expertise in many sectors across the complex arena of pediatric health, including cardiology, general medicine and devices, Rosenthal’s appointment will be critical as the committee extends its scope beyond drugs to encompass biologics and devices.

William Stanley, PhD, professor, department of medicine, has been appointed editor of the American Journal of Physiology: Heart and Circulatory Physiology (AP). His term begins January of 2011 and runs through December 2016. The AP publishes original investigations on the physiology of the heart, blood vessels, and lymphatics. Including experimental and theoretical studies of cardiovascular function, at all levels of organization ranging from the intact animal to the cellular, sub-cellular, and molecular levels. The American Journal of Physiology has been published since 1898, and is one of the largest cardiovascular research journals in the world.

Awards & Honors

Claire Fraser-Liggett, PhD, professor, departments of medicine and microbiology & immunology and director, Institute for genome sciences, was inducted into the 2010 Maryland Women’s Hall of Fame in March. Fraser-Liggett was one of six women selected for this award, which recognizes Maryland women who have made outstanding contributions to the state and are visible models for future female leaders.

David Jerrard, MD, associate professor, and Joseph Martínez, ’98, assistant professor, both from the department of emergency medicine, were named “Top 40 Under 40” by The Journal of Emergency Medicine. Jerrard is editor of the journal’s clinical laboratory section, while Martinez edits the clinical reviews section.

Edward Weisman, MD, professor, department of medicine, in the 2010 recipient of the William S. Middleton Award. Weisman and his research associates isolated and cloned a protein called the Statokinetic Ion-Exchange Regulatory Factor or NHERF/NHERF-1, the first member of this family, regulates the assembly of other proteins and is important in the movement of mineral and electrolytes across cells, and the function and signaling of a number of hormones. Mutations in the NHERF-1 gene have been identified in patients with kidney stones and in estrogen-receptor-positive breast cancer and may also be involved in postpartum, schizophrenia and some forms of deafness. The Middleton Award is the highest honor awarded annually by the Biomedical Laboratory Research and Development Service to Veterans Administration biomedical research scientists. In recognition of outstanding scientific contributions and achievements in the areas of biomedical and bio-behavioral research relevant to the healthcare of veterans, it was established in 1960 to honor Middleton, an educator and physician-scientist who served as the VA’s chief medical director from 1955 to 1963. Recipients receive a cash award of $5,000, and an inscribed plaque, as well as a $50,000 per year for 3 years in additional research support. The award was presented to Weisman in April by Undersecretary for Health, Dr. Robert A Petzel, at a ceremony in Washington, DC.

The American Journal of Physiology: Heart and Circulatory Physiology (AJP) was invited to present “Overview of U.S. Pandemic H1N1 Vaccine Development” at the Taipei for Disease Control, and “Hypersusceptibility to Lethal Bacterial Pneumonia Post-Influenza Recovery” at the XII International Symposium on Respiratory Viral Infections in Taipei, Taiwan, in March.

Steven Czinn, MD, professor and chair, along with Maureen Black, PhD, professor, Debra Counts, MD, assistant professor, Virginia Keane, MD, associate professor, and Alessio Fasano, MD, professor, all from the department of pediatrics, and Yvette Rooks, MD, assistant professor, department of family & community medicine, presented “Intestinal Epithelial Cell Function” at the conference was invited to present “The Temporal Dynamics of the Human Vaginal Microbiota,” Jennifer Russo Wortman, MS, assistant professor, department of microbiology & immunology and institute for genome sciences, presented “A Data Analysis and Coordination Center for the Human Microbiome Project,” at the conference.

Anthony Gaspari, MD, the Albert Shaibs, PhD, professor and chair, department of dermatology, was featured on the February 1st episode of The Dr. Oz Show. Gaspari discussed his continuing treatment of a patient from Demar, the Indonesian “tree man.”

Sharon Henry, ’85, associate professor, department of surgery, participated in the American College of Surgeons Distinguished Voting Surgeon in Combat Care Program. Her duties included providing surgical care for wounded U.S. soldiers, marines and airmen, and teaching U.S. military medical personnel at Landstuhl Regional Medical Center in Ramstein, Germany.

Julie Dunning Holtop, PhD, assistant professor, department of microbiology & immunology and institute for genome sciences, was invited to present “Gene Transfer from Bacteria to Eukaryotes” at the European Cooperation in Science and Technology Workshop on Arthropod Symbiont Genomics and Metagenomics, held in January in Madeira, Portugal.

Thomas Scala, MD, Francis X. Kelly Professor of Trauma Surgery, department of surgery, and director program in trauma, presented “Damage Control Orthopedics: What is it and Why is it Important?” also “Dif- ficult Case Management,” and “Where Does Offensive Control of Pelvic Fracture Bleeding Fit In?” at the point counterpart conference in Doha, Qatar. Scala also presented “Timing of Fracture Fixation in Patients with Multiple Trauma” at the trauma update entitled “Dam- age Control Strategy in Trauma” in Milano-Maberna, Italy.

Teresa Shea-Donohue, PhD, professor department of medicine, presented “Im- mune Regulation of Intestinal Epithelial Cell Function” at the US/AIRland Func- tional Foods Conference in Cork City, Ireland in March.

Lisa Shulman, MD, professor, department of medicine, invited to present “The Role of the Female Bar and Law in the Development of Medicine” at the University of Maryland, Baltimore, MD. Shulman is a member of the Maryland Bar and the Maryland State Senate.

Events, Lectures & Workshops

Bryan Ambro, MD, MS, assistant professor, Jeffrey Wolf, MD, associate professor and Herman Goldstein, MD, PGY-4 resident, all from the department of medicine, presented “Role of the Female Bar and Law in the Development of Medicine” at the University of Maryland, Baltimore, MD. Shulman is a member of the Maryland Bar and the Maryland State Senate.
George Lewis, PhD; professor, institute of human virology and department of microbiology & immunology. Received a five-year $2,955,849 grant from NIH for his work entitled “Broadly Neutralizing Monoclonal Antibodies Against HIV-1.” The goal is to identify novel monoclonal antibodies that broadly recognize the HIV-1 envelope glycoprotein gp120 and block infection in vitro to guide vaccine development.

Marc Hochberg, MD, MPH, professor, department of medicine, published in the National Institute of Health (NIH)’s genome database. Presented a talk on “The Human Genome Project” at the 10th European Conference on Genomes in The Netherlands in March.

Mandeep Mehra, MBBS and William Stanley, PhD. Both professors, department of medicine, received a five-year, $3 million award from the National Institutes of Health, National Heart, Lung and Blood Institute for a project entitled “Docosahexaenoic Acid for Treatment of Heart Failure.”

Andrea Meredith, PhD, assistant professor, department of physiology, received a five-year, $1.875 million grant from the NIH to support his research proposal entitled “Daily Regulation of Ionic Currents.”

James Nataro MD/PhD, ’87, professor, department of pediatrics, received a two-year, $1.099,740 grant through the enteric vaccine initiative of PATH entitled “A Toxoid Vaccine Against Heat-Stable Enterotoxin of E. coli.” The overall goal of this project is the development of a conjugate ST toxoid vaccine candidate against enterotoxic E. coli, the major cause of traveler’s diarrhea and of bacterial diarrhea among children in developing countries.

Christopher Plowe, MPH, MD, professor, department of medicine and center for vaccine development, received a three-year, $1.5 million contract from USAID for his work entitled “Molecular Surveillance of Drug Resistant Malaria in the Greater Mekong Subregion.” The contract has a two-year option period for an additional $1 million. Additionally, Plowe received a five-year, $970,000 grant from the University of Oxford, funded by Bill and Melinda Gates Foundation, to oversee the Molecular Module of the Worldwide Anti-Malarial Drug Resistance Network, whose purpose is to develop and manage a global database to validate new research tools for efficacious use of anti-malarial drugs.

Jean-Pierre Raoult MD, PhD, associate professor, department of microbiology & immunology and institute for genome sciences, presented four-year, $2,955,849 grant from NIH to study “Lateral Stability and Falls in Aging.” This is the first R01 grant ever to study “Lateral Stability and Falls in Aging.” This is the first R01 grant ever awarded to the department.

Lisa Shulman, MD, professor, department of neurology has been awarded a four-year, $2,625,992 grant from NIH to create a research site for the Patient-Reported Outcomes Measurement Information System Project. The grant will be used to develop a new measure of self-efficacy for self-management of chronic disease and to perform validation studies of this new measure in five chronic neurologic disorders (MS, Parkinson’s disease, peripheral neuropathy, and stroke). The University of Maryland Neurology Ambulatory Center.

Herve Tettelin, PhD, associate professor, department of microbiology & immunology and institute for genome sciences, received a three-year, $1.884,341 grant for a project entitled “MRI-R2: Acquisition of Data Intensive Academic Grid (DIAG).” The DIAG project will serve as a resource for investigators and will include a computational infrastructure, a high-performance storage network, and optimized data retrieval and mining by the data from public data repositories.

W. Gil Wies, PhD, professor, department of physical therapy, was awarded a four-year, $1,491,000 grant from the NIH National Heart, Lung, and Blood Institute. The grant supports his research proposal entitled “Physiologic Regulation of MLCK in Intact Arteries.”

Grants & Contracts of $1 million and above
Message from the MAA President

Practicing physicians remain on the cutting edge of scientific advancement by attending continuing medical education courses, reading publications, and attending grand rounds and seminars. It is my pleasure to report that our Medical Alumni Association is exploring another tool to keep up-to-date: viewing medical school lectures through the world-wide web. Whether it has been one year or 71 years since graduation, we believe alumni will appreciate access to these classes taught by our world-class faculty. It is our hope to have as many as 50 lectures on line and available to dues-paying members of the MAA by late 2010. Most of these lectures were presented during the past year to first- and second-year students in Taylor Lecture Hall of the Bresler Research Laboratory. Many of them explore subjects involving advances in understanding the human genome and other discoveries that have occurred since completing our medical school educations. Also included in the package for your enjoyment will be historical pieces featuring the late Theodore E. Woodward, ’38, former chairman of the department of medicine.

So, in addition to receiving four issues of the alumni Medicine Bulletin magazine and enjoying a wide-range of services, your $85 membership will include this priceless offering. Once your dues are tendered, registration will take just a couple of minutes on our website, www.medicalalumni.org.

It is an honor and a pleasure to serve as your president this year, representing more than 7,500 living alumni of the University of Maryland School of Medicine. Please join us in our work for this great medical school.

Otha Myles, ’98, completed an internal medicine residency and fellowship training in infectious diseases at the Walter Reed Army Medical Center in Washington, D.C. He worked in the U.S. Army as an infectious disease physician/investigator in the U.S. Military HIV Research Program and Walter Reed Army Institute of Research until 2009. Myles recently returned to Maryland as an assistant professor in the department of medicine. He has been serving on the alumni board since 2003.

The 135th Recognition Luncheon

Elijah Saunders, ’60, Selvin Passen, ’60, and members of the golden anniversary class of 1960 were the guests of honor at the MAA Recognition Luncheon on April 30 at the Southern Management Corporation Campus Center. Saunders was recipient of the 2010 MAA Honor Award & Gold Key, awarded for outstanding contributions to medicine and distinguished service to mankind. Passen received the 2010 MAA Distinguished Service Award, presented for contributions to the medical school and alumni association. There were three additional honorees this year: Allen R. Myers, ’60, Bernice Sigman, ’60, and Morton J. Rapoport, ’60. They received the University of Maryland School of Medicine Alumni Leadership Award, presented to graduates who distinguish themselves in their chosen profession. Myers is the former dean at Temple University; Sigman for 20 years served as associate dean for student affairs at Maryland; and Rapoport was named CEO of the University of Maryland Medical System in 1982, a post he held until retirement in 2003. During the luncheon, which also served as the annual business meeting of the Medical Alumni Association, Otha Myles, ’98, was elected 136th president.

Our Medical Alumni Association

Mission: The Medical Alumni Association of the University of Maryland, Inc., in continuous operation since 1875, is an independent charitable organization dedicated to supporting the University of Maryland School of Medicine and Davidge Hall.

Structure: The board consists of five officers and nine board members. Each year more than 100 alumni participate on its seven standing committees and 13 reunion committees.

Membership: Annual dues are $85. Dues covering basic services are waived for emeritus members (graduated more than 50 years or have reached 70 years of age). Recently graduated alumni in training pay $25. Revenues support salaries for two full-time and five part-time employees, as well as general office expenses to maintain the alumni data base; produce the quarterly Medicine Bulletin magazine; stage social events for alumni and students (including the annual reunion); administer the revolving student loan funds; and oversee conservation work on Davidge Hall and maintain its museum. These expenses are partially offset by the Passen Family MAA Endowment Fund.

Annual Fund: The association administers the annual fund on behalf of the medical school. Gift revenues support student loans and scholarships, lectureships, professorships, capital projects—including Davidge Hall conservation—and unrestricted support to the dean.
Bolivar Died from Arsenic Poisoning

It was arsenic and not tuberculosis that killed Simon Bolivar, one of South America’s greatest military figures. This was the conclusion of Paul G. Auwaerter, MD, MBA, FACP, clinical discussant at Maryland’s historical clinicopathological conference on April 30.

Born in Caracas, Venezuela, in 1783, Bolivar died of a mysterious illness at age 47. The common belief until now is that he died of consumption, a common condition of the day, after suffering a long illness with a variety of symptoms. These included frequent bouts of losing consciousness, skin darkening, weight loss, coughing, exhaustion, and persistent headaches.

In carefully reviewing the case, Auwaerter concluded that most of Bolivar’s symptoms point to a slow, chronic poisoning—the kind that results from drinking contaminated water.

“He spent a lot of time in Peru,” stated Auwaerter, associate professor and clinical director in the division of infectious diseases at Johns Hopkins University School of Medicine. “And there have been Columbian mummies found there that have tested positive for high levels of arsenic.”

It is also believed that doctors were treating Bolivar with arsenic as a treatment for some of his illnesses.

According to Auwaerter, there were no reports of Bolivar coughing up blood, and a green fluid later found around his heart suggests a bacterial infection. There were also reports of a tumor in his lungs that caused him to be severely hoarse. Auwaerter’s conclusion: chronic arsenic intoxication complicated by bronchitis and lung cancer.

The diagnosis was embraced, at least in part, by Venezuelan president Hugo Chavez. In a televised speech to his country after the announcement of Auwaerter’s findings, Chavez restated his belief that it wasn’t tuberculosis that killed the general but something more sinister: “I don’t know if we’ll be able to prove it, but I think they assassinated Bolivar.”

Two representatives of the Venezuelan embassy were dispatched to the event, including an individual serving on the presidential commission formally investigating the death.

John Dove, MBBS, LRCP, FRCS, MS, a retired orthopaedic spine surgeon and Bolivar scholar from Acharacle, Scotland, agreed that Bolivar had his share of enemies and had avoided a few assassination attempts. Dove was invited to present a historical perspective.

The conference serves as the centerpiece for the Medical Alumni Association’s annual reunion. [Image]

Simon Bolivar: More of a Caesar than a Washington?

The Liberator. He is still known that way today across his native continent of South America two centuries after his military and political career. One of the nation states that he liberated from Spanish colonialism—Bolivia—bears his surname, as does the currency of his home country, the Bolivarian Republic of Venezuela. Heroic statues and busts of him adorn cities in the United States, much of Europe, and even some Asian capitals. Most often portrayed on horseback, Simon Bolivar is seen as the man who will come riding to free the masses and grant them a form of self-government. He is frequently compared to other revolutionaries, military and political leaders who left permanent marks: Napoleon, Alexander, and Washington.

His legacy endures in the nations of South America, whose very existence as independent states depended on his peculiar strengths. Yet are such grand comparisons justified?

His full name was Simon Jose Antonio de la Santissima Trinidad Bolivar Palacios y Blanco, and he was born in July 1783, just months after the conclusion of the United States’ war of independence. Bolivar’s family had been in Venezuela since the 16th century and owned sugar and cacao plantations, copper mines, and hundreds of slaves. The Bolivars and their kin held high offices, and they lived at the top of the Criollo elite, i.e., the ruling class who were ethnically Spanish but born and raised in the colonies of Spain’s vast American empire. Bolivar’s parents died young; the future Liberator was an orphan before the age of 10. Because his father had been among the richest men in Caracas, however, the young Bolivar had extensive opportunities for travel and education. His schooling was along the lines of the pre-industrial era, when privileged pupils arrived on their own time at small schools run by tutors who were sometimes paid directly by their pupils. As an adolescent he already showed a proud streak of independence. According to his older sister, Simon would “wander the streets of Caracas, on foot and on horseback, associating with boys not of his own class.”

Bolivar spent time training with a local military unit before departing for Europe at age 16. There he continued his education, if rather casually; but he would always be an enthusiastic reader. According to close associates in adult life, whenever he could recline in his hammock he would always have a book in his hands.

While in Spain, and only just turned 18, Bolivar met and married an aristocratic woman a few years his senior, Maria Teresa Rodriguez del Toro y Alaysa. They returned together to Venezuela, but there she died (probably of yellow fever) within a year. Simon himself was not even age 20, and he vowed never to remarry. He kept the vow.

“Without the death of my wife, I would not have made my second journey to Europe, and it is probable that the ideas I acquired would not have taken root…the death of my wife early propelled me on the road to politics,” he had written.

He was said to be “desolate” at this time, but his eventual response was to cross the Atlantic once more and go further with his education. He conducted a version of the Grand Tour—again made possible by considerable inherited wealth. While visiting Italy in 1805, he showed his developing ideology by wearing an oath to the ideals of liberty within sight of the ancient Roman Forum. He then visited the United States during the presidential term of Thomas Jefferson and saw, as he later wrote, “for the first time in my life…rational liberty at first hand.” But he did not regard the Federal model of the U.S. Constitution as practical in the society of Spanish America; his own people would always need a strong military figure to lead them. This was a principal to which, like his vow never to remarry, he would definitely hold.

Spain was an illusory imperial power by the end of the 18th century, and after forces of Napoleon took control over the Iberian peninsula in 1808, rebel leaders across South America began to spark movements to free themselves. Initial success came to the “patriots” of Venezuela by 1811, and the young Bolivar, now back at home, was among their leaders. A royalist backlash ensued, however, and eventually Bolivar fled to the Caribbean and spent the better part of two years in exile—much of it in Haiti, where he gained material support from freed slaves. After his return to Venezuela in 1817, he would embark on a decade-long series of struggles that resulted in the com-
To be fair, Bolivar faced a set of challenges that Washington did not: a society larger, more diverse, and even more hide-bound with traditional rules of class and caste than was true in the 13 colonies of British North America... Indeed, a closer personal comparison may be to the life and career of Julius Caesar.

with legal precedent in ancient Rome). Caesar then gained some political successes, such as his reform of the calendar, but so too did Colombia, Ecuador, Peru, and Bolivia, all due at least in part to Simon Bolivar's skill and determination.

Bolivar achieved a decade-long series of military successes and himself with a "popular" party. After some initial setbacks, in the summer of 1813, after he had led patriot forces in the retaking of Caracas from Spanish royalists, he declared to his great-nephew and heir, the man we know as the first Roman emperor, Augustus. Bolivar had no such figure to follow him, yet like Augustus, El Libertador would advertise his achievements in grand but precise terms. As early as the summer of 1813, after he had led patriot forces in the retaking of Caracas from Spanish royalists, he declared to the masses:

Your liberators have arrived, from the banks of the modern Magdalene to the fountain valleys of the Anagua and the precincts of the great capital...victorious they have forded rivers...crossed bleak and icy plateaus...they have triumphed seven times...they have beaten five armies and 10,000 men.

Caesar knew the language of power, but his plan of assassination but still lost power and indeed did not live long after his narrow escape. Caesar's united Roman world would only be secured by his great-nephew and heir, the man we know as the first Roman emperor, Augustus. Bolivar was forced to assume power and indeed did not live long after his narrow escape.

Bolivar knew the language of power, but his plan of assassination but still lost power and indeed did not live long after his narrow escape. Caesar's united Roman world would only be secured by his great-nephew and heir, the man we know as the first Roman emperor, Augustus. Bolivar had no such figure to follow him, yet like Augustus, El Libertador would advertise his achievements in grand but precise terms. As early as the summer of 1813, after he had led patriot forces in the retaking of Caracas from Spanish royalists, he declared to the masses:

Your liberators have arrived, from the banks of the modern Magdalene to the fountain valleys of the Anagua and the precincts of the great capital...victorious they have forded rivers...crossed bleak and icy plateaus...they have triumphed seven times...they have beaten five armies and 10,000 men.

Caesar knew the language of power, but his plan of assassination but still lost power and indeed did not live long after his narrow escape. Caesar's united Roman world would only be secured by his great-nephew and heir, the man we know as the first Roman emperor, Augustus. Bolivar had no such figure to follow him, yet like Augustus, El Libertador would advertise his achievements in grand but precise terms. As early as the summer of 1813, after he had led patriot forces in the retaking of Caracas from Spanish royalists, he declared to the masses:

Your liberators have arrived, from the banks of the modern Magdalene to the fountain valleys of the Anagua and the precincts of the great capital...victorious they have forded rivers...crossed bleak and icy plateaus...they have triumphed seven times...they have beaten five armies and 10,000 men.
Reunion Class Parties

- Class of 1945 at the Maryland Club
- Class of 1950 at the Hopkins Club
- Class of 1955 at the Maryland Club
- Class of 1960 at Tabrizi’s Restaurant
- Class of 1965 at the St. Paul Plaza Conference Center
- Class of 1970 at the St. Paul Plaza Conference Center
- Class of 1975 at the Home of Rick & Kathie Taylor
- Class of 1980 at the Maryland Club
- Class of 1985 at the Maryland Club
- Class of 1990 at Tabrizi’s Restaurant
- Class of 1995 at Turp’s Sport Bar
- Class of 2000 at the home of Tammy & Tripp Burgunder

Did we take your picture?

Photographs from the 135th Medical Alumni Reunion are available on the MAA website: www.medicalalumni.org. Please visit our website to copy your favorites.

[Reunion photographs can be downloaded on our website: www.medicalalumni.org by clicking “Photo Gallery.”]
THROUGHOUT her undergraduate years, medical school and life itself, Sangeeta Pati, ‘90, has exhibited the kind of individualist thinking that places her in the league of those who march to the beat of their own drum. A cum laude graduate with honors from UM College Park in 1986, she graduated Alpha Omega Alpha from the medical school and completed an OB/GYN residency at Georgetown four years later. If her career path has taken turns some might call nonconformist, it is her educational pedigree that makes that course compatible with that of more traditional colleagues.

As president and medical director of the Sajune Institute for Restorative and Regenerative Medicine in Orlando, Pati heads a program that provides integrative, evidence-based medical therapies combining conventional and natural medicine to almost 7,000 patients a year.

Pati’s father was a physicist who traveled extensively and, as a result, she attended school in Switzerland and a British boarding school in India, where she mastered some of life’s important lessons—cooking, dancing and singing. At 16, while in training for competitive sports, she was vaccinated for cholera with a contaminated needle. As the result of a near fatal attack of hepatic encephalitis, she was comatose for weeks, had numerous blood transfusions, and was bedridden for six months. Following her recovery, she returned to the U.S. and enrolled at College Park.

“I started out as a computer science major, and took a position at NASA working on weather and the temperature satellite during my freshman year,” Pati recalls. “It was a terrific opportunity for someone in computer science. But it didn’t take long for me to realize that wasn’t for me.”

She promptly changed direction to electrical engineering. Soon after that, she switched to the zoology honors program where she had the chance to work at the National Institutes of Health a couple of days a week. It probably was at that point that she began to find herself in terms of her future.

“I had the chance to work in Michael Potter’s immunology laboratory at the National Cancer Institute, she says. “I wound up spending time at Litton Bionetics Research Laboratory in Rockville. It was an incredible opportunity for someone in computer science. But it didn’t take long for me to realize that wasn’t for me.”

While that undergraduate exposure to the National Cancer Institute played a role in turning her sights toward medicine, so did the illness she suffered as a teenager.

“Because my condition was extremely grave, the medical staff didn’t want to transfer me to a private hospital,” she says. “I was in a general ward in an Indian hospital where I was surrounded by the poorest people who could not afford care. This had a profound impact on me, and I kept coming back to it. I was compelled to look beyond, to find other answers.”

As an obstetrician, she worked with midwives and became impressed by the results of the natural approaches they applied to childbirth. If all this makes Pati seem a renegade physician, at odds with the medical profession, nothing could be further from the truth. In fact, she credits her medical training at Maryland and Georgetown for giving her the wherewithal to follow a somewhat atypical approach to care.

“It is only because I have a solid foundation in traditional medicine that I can be effective in what I am doing today,” she says. “I have come to realize that there is a continuum of interventions that allows restoration of good health—and they extend from increasing oxygen and breathing to pharmacy, surgery, and beyond to the interventions I have found useful. My experience convinces me that the entire continuum has its place in sound medical practice.”

Prior to establishing her practice, Pati spent a year-and-a-half researching hormone replacement therapy. She prescribes hormones that are identical to the human body including estrogen, progesterone, testosterone, thyroid, cortisol, and insulin. She saw five patients during the first month the institute, then called the Sajune Medical Center, opened. Six years later, that number has increased to almost 50 patients daily.

Although she has full privileges at a local hospital, she refers patients for surgery as needed, but claims a 90 to 95 percent complete recovery as a result of optimizing the body through a health restorative program pioneered by her.

Among the most common complaints she hears from patients are fatigue, insomnia, weight gain, decreased sex drive, anxiety, depression, and joint pain. She sees patients suffering from osteoporosis, cognitive decline, Alzheimer’s, cancer, stroke, and heart disease. She says the institute uses medications when appropriate. Although she has full privileges at a local hospital, she refers patients for surgery as needed, but claims a 90 to 95 percent complete recovery as a result of optimizing the body through a health restorative program pioneered by her.

As for life beyond her medical practice, Pati says it’s a full one. She has a 19-year-old daughter and, when time allows, she likes to paint, dance, laugh and play with her dogs. For additional information on Dr. Pati’s program, visit her website at www.sajune.com.
A Salute to the Class of 2010

One hundred sixty-one graduates from the class of 2010 headed off to residency training after graduation ceremonies on May 21. Ashley S. Huber Kinder was recipient of both the faculty gold medal and Balder Scholarship Award for outstanding academic achievement. The keynote address was delivered by Neal Baer, MD, executive producer of the NBC television series Law & Order: Special Victims Unit and formerly executive producer of NBC’s ER. This year’s graduating class, 63 percent female, is training at 72 different hospitals in 27 states.

In 1815, a medical school library opened on the first floor of the medical building. It was created after the medical faculty purchased a collection owned by the late Dr. John Crawford. He taught courses on natural history, and his introductory lecture “The Cause, Seat, and Cure of Diseases” correctly predicted a relationship between insects and human illness. More than 500 volumes were acquired from the Crawford family.

In 1910, James J. Richardson, Class of 1889, became personal physician to U.S. president William H. Taft. Recognized as one of the leading nose and throat specialists in the country, Richardson served in this same capacity for presidents Theodore Roosevelt and Warren Harding.

In 1985, Morton M. Mower, class of 1959, co-invented the implantable automatic defibrillator. The device monitored and, if necessary, corrected abnormal heart rhythms. Mower was a cardiologist at Baltimore’s Sinai Hospital and began developing the device with Dr. Michel Mirowski in 1969.

One hundred sixty-one graduates from the class of 2010 headed off to residency training after graduation ceremonies on May 21. Ashley S. Huber Kinder was recipient of both the faculty gold medal and Balder Scholarship Award for outstanding academic achievement. The keynote address was delivered by Neal Baer, MD, executive producer of the NBC television series Law & Order: Special Victims Unit and formerly executive producer of NBC’s ER. This year’s graduating class, 63 percent female, is training at 72 different hospitals in 27 states.

In 1815, a medical school library opened on the first floor of the medical building. It was created after the medical faculty purchased a collection owned by the late Dr. John Crawford. He taught courses on natural history, and his introductory lecture “The Cause, Seat, and Cure of Diseases” correctly predicted a relationship between insects and human illness. More than 500 volumes were acquired from the Crawford family.

In 1910, James J. Richardson, Class of 1889, became personal physician to U.S. president William H. Taft. Recognized as one of the leading nose and throat specialists in the country, Richardson served in this same capacity for presidents Theodore Roosevelt and Warren Harding.

In 1985, Morton M. Mower, class of 1959, co-invented the implantable automatic defibrillator. The device monitored and, if necessary, corrected abnormal heart rhythms. Mower was a cardiologist at Baltimore’s Sinai Hospital and began developing the device with Dr. Michel Mirowski in 1969.

One hundred sixty-one graduates from the class of 2010 headed off to residency training after graduation ceremonies on May 21. Ashley S. Huber Kinder was recipient of both the faculty gold medal and Balder Scholarship Award for outstanding academic achievement. The keynote address was delivered by Neal Baer, MD, executive producer of the NBC television series Law & Order: Special Victims Unit and formerly executive producer of NBC’s ER. This year’s graduating class, 63 percent female, is training at 72 different hospitals in 27 states.

A Salute to the Class of 2010

One hundred sixty-one graduates from the class of 2010 headed off to residency training after graduation ceremonies on May 21. Ashley S. Huber Kinder was recipient of both the faculty gold medal and Balder Scholarship Award for outstanding academic achievement. The keynote address was delivered by Neal Baer, MD, executive producer of the NBC television series Law & Order: Special Victims Unit and formerly executive producer of NBC’s ER. This year’s graduating class, 63 percent female, is training at 72 different hospitals in 27 states.

In 1815, a medical school library opened on the first floor of the medical building. It was created after the medical faculty purchased a collection owned by the late Dr. John Crawford. He taught courses on natural history, and his introductory lecture “The Cause, Seat, and Cure of Diseases” correctly predicted a relationship between insects and human illness. More than 500 volumes were acquired from the Crawford family.

In 1910, James J. Richardson, Class of 1889, became personal physician to U.S. president William H. Taft. Recognized as one of the leading nose and throat specialists in the country, Richardson served in this same capacity for presidents Theodore Roosevelt and Warren Harding.

In 1985, Morton M. Mower, class of 1959, co-invented the implantable automatic defibrillator. The device monitored and, if necessary, corrected abnormal heart rhythms. Mower was a cardiologist at Baltimore’s Sinai Hospital and began developing the device with Dr. Michel Mirowski in 1969.

One hundred sixty-one graduates from the class of 2010 headed off to residency training after graduation ceremonies on May 21. Ashley S. Huber Kinder was recipient of both the faculty gold medal and Balder Scholarship Award for outstanding academic achievement. The keynote address was delivered by Neal Baer, MD, executive producer of the NBC television series Law & Order: Special Victims Unit and formerly executive producer of NBC’s ER. This year’s graduating class, 63 percent female, is training at 72 different hospitals in 27 states.

In 1815, a medical school library opened on the first floor of the medical building. It was created after the medical faculty purchased a collection owned by the late Dr. John Crawford. He taught courses on natural history, and his introductory lecture “The Cause, Seat, and Cure of Diseases” correctly predicted a relationship between insects and human illness. More than 500 volumes were acquired from the Crawford family.

In 1910, James J. Richardson, Class of 1889, became personal physician to U.S. president William H. Taft. Recognized as one of the leading nose and throat specialists in the country, Richardson served in this same capacity for presidents Theodore Roosevelt and Warren Harding.

In 1985, Morton M. Mower, class of 1959, co-invented the implantable automatic defibrillator. The device monitored and, if necessary, corrected abnormal heart rhythms. Mower was a cardiologist at Baltimore’s Sinai Hospital and began developing the device with Dr. Michel Mirowski in 1969.
The Medical Alumni Association and school welcomed 59 new members into their society for major donors on April 29, bringing the total number to more than 950 since its formation in 1978. The luncheon was held at the new Southern Management Corporation Campus Center. About 140 members were in attendance for the event.

Elm Society ($10,000–$24,999)

- Alumni
 - Timothy D. Baker, ’52
 - Robert J. Dawson, ’59
 - Allen R. Myers, ’60
 - Joel S. Mindel, ’64
 - John W. Maun, ’65
 - Larry A. Snyder, ’65
 - Richard M. Weisman, ’73
 - Charles P. Adams, ’74
 - M.C. Kowalewski, ’75
 - Andrew P. Fridberg, ’78
 - Marianne N. Fridberg, ’78
 - Karen C. Carroll, ’79
 - Bruce C. Marshall, ’79
 - Peter J. Golueke, ’80, & Valerie Golueke
 - Michael R. Kessler, ’80
 - George Thomas Grace, ’83
 - Mary T. Behrens, ’84
 - Robert C. Greenwell Jr., ’85
 - Merdad V. Passey, ’89
 - Tsunh Tomou, ’90
 - Karen M. Connor, ’93
 - David Chiu, ’98
 - Andrew C. Kramer, ’99

- Friends
 - Dr. Lee Abramson
 - Dr. Akshay N. Amin
 - Mrs. Jeanine Clayton
 - Dr. Francine Corteza
 - Dr. Jay Goozh
 - Dr. Nathan Levin
 - Mr. Karl Zheng

Silver Circle ($25,000–$49,999)

- Alumni
 - Henry D. Perry, ’51
 - Brian S. Saunders, ’69
 - Thomas E. Kraljevski, ’75
 - Robert E. Roby, ’75
 - Michael B. Stewart, ’75

- Faculty
 - Dr. Robert H. Christenson
 - Dr. Richard P. Dutton
 - Dr. Robert Liss
 - Dr. Chris Papadopoulos

- Friends
 - Mrs. Joan Dominique
 - Mrs. Megan E. Hills
 - Dr. Dan & Nancy S. Longo
 - Dr. A. Harry Oleynick

1007 Circle ($50,000 & Above)

- Alumni
 - Allen J. O’Neill, ’45
 - John R. Rowell, ’67
 - Gordon I. Levin, ’68

- Faculty
 - Dr. Cedric Yu

- Friends
 - Dr. George C. Burton
 - Mrs. Hilda Perl Goodwin
 - Dr. Cheriyath R. Nath
 - Mr. Gunther Wertheimer

- Friends
 - Dr. George C. Burton
 - Mrs. Hilda Perl Goodwin
 - Dr. Cheriyath R. Nath
 - Mr. Gunther Wertheimer

Scholarships a Priority

What if any bright student could afford to live the dream of becoming a doctor regardless of their financial situation because scholarships were available? Scholarships provide vital resources that help keep the cost of a medical education affordable. This year our graduating seniors head to training with $150,000 in average indebtedness, and it is no secret that these obligations are also impacting choices of medical specialty.

During the 2010 school year more than $1.2 million was available at Maryland to deserving students through scholarships and awards. Despite this, the school still lags behind peer institutions and unfortunately loses some quality applicants to other institutions offering more competitive financial packages.

The impact of scholarship support is far reaching. Since more than half of the State of Maryland’s practicing physicians were either educated or training on our campus, we can help to ensure that the quality of medical care in the state remains among the best anywhere. For these reasons, raising money for scholarships is an important part of the school’s fund raising campaign. For more information on how you can help support our student scholarship program, please contact the development office at 410-706-8563.
New Waves in Medicine was the theme of the 2010 Fund for Medicine Gala held by the medical school on March 27 at the Baltimore Marriott Waterfront Hotel. The annual event was the largest yet in its six-year history with a crowd topping 700, including a significant number of medical alumni and university leaders. John and Tee Kelly served as honorary co-chairs of the black-tie event, encoring the program that highlighted several excellent research and clinical programs in the school. Kelly is president and senior consultant at Kelly Benefit Strategies and a member of the school's board of visitors.

A video presented the theme featuring several faculty members who described the new waves of discovery and breakthroughs taking place at the school. The video can be viewed on the school's website http://medschool.umaryland.edu. The program included a presentation about the dramatic, lifesaving work that faculty and medical center staff, along with Catholic Relief Services, have been performing in Haiti in the aftermath of the massive earthquake that devastated the country earlier this year. Thomas Scalea, MD, the Francis X. Kelly Chair in Trauma Surgery and physician-in-chief of the R Adams Cowley Shock Trauma Center, described the challenges his staff continue to experience in Haiti. Musical entertainment was provided by Mood Swings and lead Jack Vaeth '92.

The gala raised more than $376,000, thanks to the participation of many generous corporate sponsors. The Whitting-Turner Contracting Company served as the presenting sponsor for the 2010 gala. Platinum sponsors included PNC Bank and University of Maryland Medical System. Gold sponsors were Joseph Farda and family and M&T Bank. Silver sponsors included BakerHostetler, LLP; BD Diagnostics; Mr. and Mrs. Frank Carlacci, Comcast Corporation; Kelly Benefit Strategies; Mercy Medical Health Services; Roche Diagnostics, Inc.; Shonkos USA Building and University Physicians, Inc. Bronze sponsors were the Association of American Medical Colleges; Bevel Design; Dynasplint Systems, Inc.; Illumina, Inc.; Lockheed Martin Corporation; University of Maryland Baltimore Foundation, Inc.; University System of Maryland Foundation, Inc. and Webb Mason. Gordon Feinblatt sponsored the entertainment and Echo Communications was a Patron sponsor.

Next year's Fund for Medicine Gala will be held on Saturday, March 12, at the Baltimore Hilton Hotel, a short walk from the University of Maryland campus.

Martin I. Passen, ’90, and wife Amy

Protect Your Assets

Certain wealthy individuals, such as physicians, directors, business owners and other professionals are more likely than others to have their personal assets attacked by creditors. Popular asset protection tools, including offshore trusts, limited liability business structures and various asset titling techniques have limitations and may involve risks. A domestic asset protection trust (“APT”), when used in conjunction with other techniques, may balance the risks and protections offered and may therefore be the best strategy to fulfill one’s asset protection objectives.

In 1997, Delaware enacted one of the first domestic APT statutes (the Delaware Qualified Dispositions in Trust Act) and since then, 10 other states have enacted similar laws. Delaware has a long tradition as a leader in personal trust law, and Delaware courts have proven their competence and willingness to uphold the state’s law.

An APT permits an individual (commonly called the “Settlor”) to create a trust, fund it with his or her assets, and have the ability to receive distributions from the trust, while the assets in the trust are protected from the individual’s future creditors. The Settlor does not have to be a Delaware resident; an increasing number of individuals from all over the U.S. and beyond create Delaware APTs. To enjoy the creditor protection offered by a Delaware APT, the trust must be irrevocable and it must be administered under Delaware law. The trust instrument has to contain a spendthrift clause, which provides that the interest of the beneficiaries of the trust may not be transferred, assigned, pledged or mortgaged, whether voluntarily or involuntarily, before the trustee actually distributes trust property or income to the beneficiary. The trustee of the trust must be either a Delaware resident or a bank or trust company authorized to conduct trust business in Delaware.

Under Delaware law, the Settlor may retain the following rights to distributions from the trust: The ability to receive income or principal distributions pursuant to the trustee’s or an advisor’s broad discretion or a standard as determined by the trustee and/or the advisors; the annual right to receive current income distributions and/or a specified percentage (5% or less) of the value of the trust property; and as applicable an interest in a charitable remainder trust (“CRT”), a qualified annuity interest in a grantor retained annuity trust (“GRAT”) or a grantor retained unitrust (“GRUT”) and the use of real property under a qualified personal residence trust (“QPRF”).

The Settlor may name other beneficiaries of the trust as well, including the Settlor’s spouse and children. Delaware law also permits the Settlor of an APT to retain certain additional rights, including a testamentary special power of appointment, the right to remove and replace trustees or advisors, the right to consent to or direct investments, and the power to veto distributions. The trust instrument also may contain provisions for the distribution of income or principal to the Settlor to pay the taxes due on the trust income.

Physicians and other professionals may have personal liability arising from malpractice claims to the extent that the judgment exceeds available insurance coverage or if the claim is not covered by insurance. Business owners and corporate directors may be subject to personal liability for their actions or inactions. All wealthy individuals are concerned about protecting their hard-earned assets from judgments arising out of lawsuits, such as for personal injury or property damage caused by a car accident. Still others may have a concern about protecting assets from the claims of a future spouse in a divorce settlement, particularly because of the limitations of premarital agreements. Delaware offers individuals a unique climate for protecting and perpetuating wealth, and a Delaware Asset Protection Trust may be an appropriate tool to address these concerns.
1940s: 1945: Robert F. Byrne of Wichita, Kan., reports that his health has been good since retirement in 2001. He has four children and 29 grandchildren and great grandchildren, reads medical journals and exercises daily at the YMCA.

1960s: 1960: Merrill T. Syphus of St. George, Utah, is performing body sculpting procedures at a medical spa. "Eric L. Lindstrom of Laurel, Miss., continues practicing part time and serves on the state medical association delegation to the AMA. Beginning in November, Lindstrom begins his term as president of the Southern Medical Association. 1965: Ann Robinson Willie reports that life is good in Arizona, N.C. 1967: Boyd D. Myers of Arvada, Colo., is spending more time at his second home in Pt. Luderdale, Fla., following recent volunteer work in South and Central America. He looks forward to seeing everyone at the 50th reunion in 2017; then we'll see everyone well!

1970s: 1970: John P. Caulfield of West Atlas, Calif., is consulting in research & development for biotech and small pharmaceutical companies since retiring from Hoffman-La Roche in January. He enjoys the company of a grandson in Phoenix, a granddaughter in Italy and birding worldwide. "Walker L. Robinson of Champaign, Ill., is a physician advisor at the Cardiac Foundation Hospital after retiring from there as head of neurological surgery in December 2009. 1971: Daniel L. Cohen of Alexandria, Va., is a senior partner for the international healthcare consulting firm Marton, Blanck and Associates, with focus on patient safety and population health management strategies. 1972: Robert E. Greenspan of Alexandria, Va., was featured in the May 2010 Internal Medicine News. The piece focused on his collection of books and medical antiques. "Michael J. Maloney of Cincinnati invites classmates to read his novel "Baptic's War" (MikeBlapic. com). "Robert J. Neborsky of Del Mar, Calif., presented his model of attachment based short-term dynamic psychotherapy at the IPPNOW Conference in London in 2009 and at St. John's College in Oxford in May 1972. "Robert J. Bauer of Hollywood, Md., has a grandson Alexander born to daughter Karen, '02, and son-in-law David on March 3. Bauer and his daughter are in practice together in southern Maryland. 1973: Brian J. Winter and wife Pat of Ellicott City, Md., report that son Greg is receiving additional training at the University of Pittsburgh School of Dental Medicine following graduation from Maryland's dental school in spring 1973. "Nelson H. Goldberg of Baltimore spoke at a student travel appreciation celebration in Chesterton on April 20. Goldberg is professor of plastic surgery at Maryland and will be attending a social event at Chester River Hospital Center. The event ran in conjunction with National Volunteer Week. 2010. Goldberg also serves as vice president of the Medical Alumni Association. "1974: Harry C. Knipp of Reisterstown, Md., reports that son David will be attending medical school in Maryland in fall, following graduation from the University of Pennsylvania summa cum laude. He becomes the fifth straight generation of his family to attend medical school. "1977: Richard Feldman of Lanham, Md., helped form a new internal medicine practice group along with available specialists. "1979: William O. Richards of Mobile, Ala., is professor and chair of the department of surgery at the University of South Alabama College of Medicine. "Thomas B. Volatile of Tyler, Tex., is an orthopaedic surgeon at Sam Houston Regional Medical Center, a 250-doctor multispecialty group.

1980s: 1980: William J. Otvacek of St. Augustine, Fla., entered his 25th year of practice in the sunshine state. He is director of the San Augustine Eye Foundation. Otvacek and wife Kathyrn have four children living in Baltimore. "1981: Maura K. Dollimore has been assigned to the U.S. Coast Guard headquarters in Washington, D.C. "Marc A. Jaffe of Barrington, R.I., reports that son, graduated from Maryland in spring as a member of the class of 2010, while son Jonathan begins in fall as a member of the class of 2014. "1982: Stephen Oztano of Cedar Hill, Tex., is president of the Dallas County Medical Society. "1983: Thomas B. Volatile of Alexandria, Va., is a senior partner at the consulting firm Martin, Blanck and Associates, with focus on patient safety and population health management strategies. 1984: Heidi Gorsuch Rafferty and family recently moved to the Trinity Club, Va., where she serves as medical director of breast care at the local hospital. Her children, ages 14, 11, and seven, are thriving after the initial angst at yet another move. Rafferty reports that they will stay put for the foreseeable future. "1985: Mary E. Greenspan of Del Mar, Calif., reports that his oldest child is an incoming freshman at New York Medical School. 1986: Heinrich T. Schwartz is a clinical assistant professor of radiology at the University of Washington. Schwartz is vice president and medical officer. "1987: Hedwig H. Weiss of Panama City, Fla., continues to enjoy living in southern California with children Brandon, age seven, Ryan, age four, and Tayrn, age one. "1988: Charles R. Feldman of Spring Valley, Calif., returned from an eight-month deployment to Landstuhl Medical Center in Germany, providing gastroenterology services to sick and wounded U.S. soldiers evacuated from Iraq and Afghanistan. Harris is a captain in the U.S. Navy. "1989: Tracy A. Berg has been practicing vascular surgery in her home town of Spokane Valley Wash., for 15 years. She reports that son Brian Magnuson is a freshman in college.

1990s: 1991: Marjorie K. Warden of Woodstock, Md., is a partner in Physicians Eye Care Center. 1995: Edward L. McDaniel of San Antonio, Tex., has deployed to Iraq for a second tour of duty. 1996: Eric Carr of Owings Mills, Md., delivered the keynote address at the 2010 pre-commencement ceremony for the University of Maryland Department of Medical and Research Technology. Carr is an intern with Greater Baltimore Medical Associates in Timonium. "1997: The piece focused on his collection of books and medical antiques. "1998: Jeffrey A. Humes of Hagerstown, Md., reports that his wife Annandale, Va., is a fellow in the American College of Radiology. Schwartz is vice president and medical officer. "1999: Edward L. McDaniel of San Antonio, Tex., has deployed to Iraq for a second tour of duty. 2000: Carol Cox of Austin, Texas, continues to enjoy living in southern California with children Chuck, age eight, Nice, age five, and two substandard goodbyes. She works in family medicine at the University of Washington. 2001: Barbara Piscacek of Denver is a gastroenterologist, enjoying clinic practice and all that the Rocky Mountains have to offer. She recently saw classmate Carole Cox and husband John, '98, and family on a trip for some skiing and catching up. 1998: Ryokel K. Imai and wife Cathy of La Palma, Calif., continue to enjoy living in southern California with children Brandon, age seven, Ryan, age four, and Tayrn, age one. 2002: James L. Medina and wife Stacie of Lancaster, Pa., proudly announce the birth of Aubry Lauren, their third, on August 7.

Bernhardt J. Statman, ’37
Pediatrics
Linthicum, N.J.
January 2, 2010
Dr. Statman trained at Newark City Hospital. A captain in the U.S. Army Reserve during World War II, his service included caring for German POWs in Bavaria. He was discharged as a major and resumed training in pediatrics before setting up practice in New Haven and West Orange where he remained until retire- ment in 1996. Appointments included director of pediatric ambulatory care at St. Barnabas Medical Center in Livings- ton, consultant at Children’s Hospital, and clinical associate professor of pediatrics at the University of Medicine & Dentistry of New Jersey at Newark. He enjoyed music, history, and antiques. Statman was preceded in death by wife Sally.
Samuel R. Pines, ’43
Surgery
Baltimore
May 25, 2010
After training in pathology at Baltimore City Hospitals, Dr. Pines joined the U.S. Army and was recruited into the Manhattan Project. He witnessed the first atomic bomb explosion during a test at White Sands Missile Range in July 1945, and later was presenting during two additional tests. Pines was discharged as a captain and returned to Maryland for surgical training at the Fort Howard Veterans Administration Hospital. He set up a private practice, enjoying privileges at Sinai and South Baltimore General hospitals as well as GBMC. He later returned to the VA and retired in 1991 as chief of staff at Fort Howard. Pines enjoyed reading, sailing, golf, tennis, and travel. He also was a lecturer at the Renaissance Institute and the Evergreen Society, and he volunteered at Living Classrooms Foundation where he set up sailing. Survivors include wife Marion, two sons, and three grandchildren.
Melvin Anchel, ’44
Psychoneurology & Family Medicine
Mission Viejo, Calif.
March 27, 2010
Michael R. Ramundo, ’44
Surgery
Woodbine, N.J.
May 2, 2010
Dr. Ramundo served as a captain in the U.S. Army during World War II after graduation, interning at Paterson General Hospital and receiving residency training at Franklin Square Hospital, Jersey City Medical Center, and at the VA in Fort Hamilton, New York. During his career he maintained a private thoracic cardiovascular practice in Clifton. He was chief of thoracic surgery, director of surgery, and senior attending in thoracic surgery at St. Joseph’s Hospital in Paterson, and he held similar appointments at The General Hospital Center in Passaic where he was also on the board of governors. Ramundo was clinical associate profes- sor of surgery, thoracic and cardiovascular surgery at the University of Medicine and Dentistry of New Jersey. From 1973 to 1974, he was president of the New Jersey Society of Thoracic Surgeons. The Passaic County Heart Association named Ramundo its man of the year in 1980, and he received distinguished service awards from St. Joseph’s and the American Cancer Society in 1982 and 1988, respectively. Ramundo was preceded in death by wife Selma and son Michael Jr. and he is survived by four daughters and eight grandchildren.
Jerome Flett, ’49
Obstetrics & Gynecology
Baltimore
June 7, 2010
Dr. Flett served at Fort Campbell in Kentucky during the Korean Conflict and was discharged with the rank of captain. In 1955, he established a private OB/GYN practice which expanded to seven offices throughout Baltimore. During his career, Flett delivered 15,000 babies and had privileges at Church Home, Lutheran, Franklin Square, South Baltimore, and Baltimore General hospitals. Flett was a Baltimore Orioles fan, enjoyed duckpin bowling, and was a bridge life master who competed in numerous bridge tournaments. He played golf, followed thoroughbred racing, and was a founding member of the Baltimore Glass Club—an organization of antique glass collectors. He operated a general practice from his home beginning in 1962, and at the time of his death he was seeing patients six days a week. Rosson enjoyed painting and was an excellent cook. He is survived by three sons, one daughter, one stepson, and three grandchildren. Marriages to Elaine Quar- troy and Paula Seyler ended in divorce.
Bate C. Toms Jr. ’50
Surgery
Martinsville, Va.
June 4, 2010
Prior to medical school, Dr. Toms joined the U.S. Navy in 1941 and served in both the Atlantic and Pacific theaters. He was discharged with the rank of lieutenant commander. Union Memorial Hospital in Baltimore was the location of his intern- ship, followed by surgical training at Union, where he was chief resident, and Maryland. Toms moved to Martinsville, Va., in 1956, becoming the city’s first board-certified surgeon and member of the Virginia Surgical Society. He enjoyed playing golf and growing orchids. Survivors include wife Margaret, three daughters, and five grandchildren.
Roy K. Skipton, ’51
Obstetrics & Gynecology
Chevy Chase, Md.
April 20, 2010
Prior to medical school, Dr. Skipton served as a parachutist in the 82nd Airborne Division, 508 Parachute Infantry Regiment of the U.S. Army—the famed Red Devils—during World War II. As an infantry platoon leader he received two Purple Hearts for wounds suffered in Holland in September 1944 and the Battle of the Bulge in December of that same year. Upon graduation from medical school, Skipton interned at Maryland and also at Maryland General Hospital where he received residency training in OB/GYN. He practiced at Prince Georges General Hospital—his alma mater—during World War II until retirement in 1984. Skipton was preceded in death by daughter Susan and is survived by wife Mary, one daughter, one son, five grandchild- ren, and three great-grandchildren.
William D. Rosson, ’52
Internal Medicine
New Carrollton, Md.
August 19, 2007
Dr. Rosson interned at Lutheran Hospital in Baltimore and trained in internal medicine. He operated a general practice from his home beginning in 1962, and at the time of his death he was seeing patients six days a week. Rosson enjoyed painting and was an excellent cook. He is survived by three sons, one daughter, one stepson, and three grandchildren. Marriages to Elaine Quar- troy and Paula Seyler ended in divorce.
James L. Banks, ’53
Family Medicine
Easley, S.C.
January 17, 2010
William P. Houpt, ’54
Emergency Medicine
Bel Air, Md.
May 25, 2010
Baltimore’s Mercy Hospital was the site of Dr. Houpt’s internship, before serv- ing active duty as a medical officer in the U.S. Air Force from 1955 to 1957. Houpt returned to Baltimore and worked in private practice from 1957 to 1961, and during the next nine years was medical director for Fisher Body & Chevrolet assembly plants. He shifted his specialty to emergency medi- cine, working at Church Home Hospital from 1969 to 1975 and as an emergency physician at Maryland General Hospital from 1975 to 1985 where he was co-chief of the department for two years. Survivors include wife Mary Jane, four sons, and one grand- daughter.
Robert G. Muth, ’56
Nephrology
Lanham, Md.
January 29, 2010
Boston Naval Hospital was the location of Dr. Muth’s internship, followed by residency training at the National Naval Medical Center and a nephrology fellowship at the National Institutes of Health. In 1963, Muth accepted a faculty appointment at the Uni- versity of Missouri. He treated Harry S. Tru- man shortly before the president’s death in 1972, and later Muth served a sabbatical in Hamburg, Germany. He retired in 1984. He enjoyed travel and wildlife carving. Survivors include wife Patricia and one son.
Robert B. Bobak, ’62
Pediatrics
Hilton Head, S.C.
March 23, 2010
Dr. Bobak interned with the United States Public Health Service, spending time on the Ogala Sioux Indian reservation in Pine Ridge S.D., the Navajo reserva- tion in Shiprock, N.M., and the Cheyenne reservation in Cheyenne, Wyo. He did a paediatrics residency followed at the Dartmouth-Hitchcock Medical Center in Hanover, N.H. Bobak practiced pediatrics in Brunswick, Maine, from 1968 to 1993 where he had a teaching affiliation at Tufts University. He practiced in Canton, N.Y., from 1993 to 1996, and in Hilton Head from 1996 to 2000. He enjoyed cooking, was an avid run-
South Baltimore General Hospital was the site of Dr. Bruther’s internship, followed by residency training at Maryland. He was a lieutenant commander in the U.S. Navy, serving as an assistant medical officer aboard the USS Shenandoah from 1965 to 1970. After his military commitment, Bruther established a practice in Annapolis and from 1979 to 1981 was chief of ophthalmology at Anne Arundel Medical Center. Appointments also included associate examiner for the American Board of Ophthalmology, member of the legislative leadership group for Medchi, board member of CareFirst—Blue Cross and Blue Shield of Maryland, and board member of the Delmarva Foundation for Medical Care Inc. Bruther enjoyed painting, hunting, fishing, and he was a decoy carver who also collected waterfowl and bird decoys. He is survived by wife Sandra, one son, one daughter, and four grandchildren.

R. Blair Garber, ’76

Family Medicine

Thomasville, Ga.

March 29, 2010

Dr. Garber received training at Tallahassee Memorial Hospital. In 1988, he relocated to Thomasville to serve as primary care physician and director of the Archbold Urgent Care Center until retirement in 2002. He enjoyed gardening and spending time with family. Survivors include wife Laura and three children.

Maureen C. Prendergast, ’82

Emergency Medicine

Middletown, Md.

March 14, 2010

Upon completion of training, Dr. Prendergast worked at a hospital in Three Rivers, Michigan, and later as an emergency room physician in Grand Rapids. She moved to Salisbury, Maryland, in 1999 and worked at Peninsula General Hospital for three years. She also taught in the physician’s assistant program at Anne Arundel Community College. Prendergast retired in 2002 due to failing health. She enjoyed reading and viewing Hollywood movies from the 1930s, 1940s, and 1950s. Survivors include one son and one daughter.

Rebecca E. Byrd, ’83

Internal Medicine

Randallstown, Md.

April 8, 2010

Dr. Byrd is survived by one daughter.

Faculty

Eugene B. Brody, MD

Psychiatrist/Administrator

Baltimore

March 13, 2010

Dr. Brody joined Maryland in the late 1950s and served as a head of the department of psychiatry for three decades on the faculty. Born and raised in Columbia, Missouri, Brody received a bachelor’s and master’s degrees in experimental psychology from the University of Missouri and his medical degree from Harvard Medical School in 1944. He received training in psychiatry and psychoanalysis at Yale University and the New York Psychoanalytic Institute. Part of his training was interrupted by World War II when he became a captain in the U.S. Army Medical Corps and headed the neuropsychiatric service for hospitals in the European Theater. Brody later became a consultant to the international military tribunal conducting war-crime trials at Nuremberg. He joined the faculty at Yale in 1948 where he remained until moving to Baltimore in 1957. For the next 30 years Brody served as professor of psychiatry, psychiatrist-in-chief for Maryland’s hospital system, chairman of the department of psychiatry, and director of the institute of psychiatry and human behavior. He was editor-in-chief of the Journal of Nervous and Mental Disease and was widely published. Brody testified for the defense at the trial of Arthur H. Bremer who shot Gov. George Wallace during his presidential campaign. From 1981 to 1983, Brody served as president of the World Federation of Mental Health and was its secretary from 1983 to 1999. He retired in 1987. Brody enjoyed sailing and is survived by one daughter and five grandchildren. He was preceded in death by wife Marian and two sons.

Albin O. Kuhn, PhD

Geneticist/Administrator

Woodbine, Md.

March 24, 2010

Dr. Kuhn headed the University of Maryland Baltimore (UMB) campus from 1967 to 1980. Born and raised in Carroll and Howard counties, Kuhn graduated from the University of Maryland College Park in 1938 where he remained to earn a master’s degree in agronomy and botany. After military service during World War II, Kuhn returned to College Park to become chairman of the department of agronomy and later assistant to the university president. In 1948, he earned a doctorate in plant genetics and physiology and performed additional post-graduate training at the University of Wisconsin. He was back in College Park in 1958 as executive vice president for the University of Maryland and seven years later became vice president for the Baltimore campus. His work in the early 1960s led to the formation of the University of Maryland Baltimore County (UMBC) which opened in Catonsville in 1966. He headed both UMB and UMBC until 1971, and continued exclusively as president of the UMB campus for another nine years. During his tenure the Baltimore campus expanded to 38 acres, as the hospital doubled in size and modern buildings were planned or erected for all six professional schools. Kuhn returned to College Park as executive vice president and retired in 1982. He is survived by wife Eileen, four sons, one daughter, 12 grandchildren, and 11 great-grandchildren. His first wife Elizabeth died in 1986.